๐Ÿค– AI Model Lifecycle Guide

Complete guide to building, training, and deploying AI models

โ† Home
1. ๐ŸŽฏ Problem Definition
Goal: Understand what you're solving.

Example: Predict if an email is spam or not (binary classification).

Define input (email text) and output (spam / not spam).

2. ๐Ÿ“ฆ Data Collection
Goal: Gather data relevant to the problem.
Example:

Emails + their labels (spam or ham)

Could come from databases, CSVs, web scraping, etc.

import pandas as pd
data = pd.read_csv("emails.csv")
3. ๐Ÿงผ Data Preprocessing
Goal: Clean and prepare the data.

Steps may include:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(data["text"], data["label"])
4. ๐Ÿง  Model Building
Goal: Define the structure (architecture) of the model.
Example: Simple neural network using PyTorch
import torch.nn as nn

class SpamClassifier(nn.Module):
    def __init__(self, input_size):
        super().__init__()
        self.fc = nn.Linear(input_size, 1)

    def forward(self, x):
        return torch.sigmoid(self.fc(x))
5. โš™๏ธ Model Training
Goal: Train the model using training data.
# Define model, loss, optimizer
model = SpamClassifier(input_size=100)
criterion = nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

# Training loop
for epoch in range(10):
    optimizer.zero_grad()
    outputs = model(X_train_tensor)
    loss = criterion(outputs, y_train_tensor)
    loss.backward()
    optimizer.step()
6. ๐Ÿงช Evaluation
Goal: Test model on unseen data and evaluate performance.
from sklearn.metrics import accuracy_score

preds = model(X_test_tensor).round()
acc = accuracy_score(y_test_tensor, preds)
print("Accuracy:", acc)
7. ๐Ÿ’พ Model Saving
Goal: Save trained model to disk.
torch.save(model.state_dict(), "spam_model.pt")
8. ๐Ÿš€ Deployment
Goal: Serve the model in production (API, mobile, etc.)
Example using FastAPI:
from fastapi import FastAPI
import torch

app = FastAPI()
model = SpamClassifier(input_size=100)
model.load_state_dict(torch.load("spam_model.pt"))
model.eval()

@app.post("/predict")
def predict(email_text: str):
    vector = preprocess(email_text)  # vectorize input
    with torch.no_grad():
        output = model(vector)
    return {"spam": bool(output.item() > 0.5)}
9. ๐Ÿ“Š Monitoring
Goal: Track how the model performs in real-world use.

You might:

Example tools:
  • Prometheus + Grafana
  • MLflow
  • AWS SageMaker Model Monitor
10. ๐Ÿ” Retraining / Feedback Loop
Goal: Continuously improve the model

As the model gets more data or starts performing poorly:

๐Ÿ”„ Complete Flow

Problem โ†’ Data โ†’ Preprocessing โ†’ Model Design โ†’ Training โ†’ Evaluation โ†’ Saving โ†’ Deployment โ†’ Monitoring โ†’ Retrain